If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-18k-25=2
We move all terms to the left:
9k^2-18k-25-(2)=0
We add all the numbers together, and all the variables
9k^2-18k-27=0
a = 9; b = -18; c = -27;
Δ = b2-4ac
Δ = -182-4·9·(-27)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-36}{2*9}=\frac{-18}{18} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+36}{2*9}=\frac{54}{18} =3 $
| 12x^2-16x+8=0 | | 7x^2+14x-60=-4 | | 8+4r-6r=-12+r-1-3 | | 3(x-5)+20=50 | | 6x+15=23x+56 | | x/5-11=18 | | v-6=38 | | 1.5q+6=36 | | 2.5(x+2)+5=34 | | 2/3x-5/3=7/3 | | 48=2v+16 | | n^2+4n-39=-9 | | 3x/5=3600 | | 182=95-x | | n^2=4n-39=-9 | | 34b(b+8)=15 | | -46=-5x+2+3x | | n^2-18n-61=2 | | 5d=23-2d+5 | | 5x-4-4=0 | | 4+4(x+3)=64 | | n^2=2n+3 | | v^2-18v+55=-10 | | 3-2(x-4)=23 | | 20z-19z-2z=8 | | 11x-2=136 | | 10x-11x=5 | | b^2+8b+20=8 | | 6q-5q-q+3q+q=12 | | p^2+6p+6=7 | | 2t+t-3t+3t-2t=12 | | 2x-10-8x+5=12 |